Find Peak element
A peak element is an element that is greater than its neighbors.
Given an input array where num[i] ≠ num[i+1], find a peak element and
return its index.The array may contain multiple peaks, in that case return the index to
any one of the peaks is fine.You may imagine that num[-1] = num[n] = -∞.
For example, in array [1, 2, 3, 1], 3 is a peak element and your
function should return the index number 2.
遍历法
思路
遍历数组, 如果一个数大于他的左右两边, 那么就是peak element
复杂度
时间O(n) 空间 O(1)
代码
public int findPeakElement(int[] nums) { if (nums == null || nums.length == 0) { return -1; } if (nums.length == 1) { return 0; } for (int i = 0; i < nums.length; i++) { if (i == 0 && nums[i] > nums[i + 1]) { return i; } if (i == nums.length - 1 && nums[i - 1] < nums[i]) { return i; } if ( i > 0 && i < nums.length - 1 && nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) { return i; } } return - 1;}
二分法
思路
如果一个数小于他左边的数说明正在下坡, peak element在左边; 如果小于右边的数说明正在上坡, peak 在右边. 另外一种情况就是它即不小于左边也不小于右边, 此时本身就是peak element
复杂度
时间O(logn) 空间O(1)
代码
public int findPeakElement(int[] nums) { int left = 0, right = nums.length - 1; while (left + 1 < right) { int mid = left + (right - left) / 2; if (nums[mid] < nums[mid - 1]) { right = mid; } else if (nums[mid] < nums[mid + 1]) { left = mid; } else { return mid; } } if (nums[left] > nums[right]) { return left; } else { return right; }}